PH4

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& Marks Available \\
\hline 1. \& \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} \& (i) \& \begin{tabular}{l}
[In any interaction] the [vector] sum of bodies' momenta [accept 'total momentum'] stays constant (1), provided no [resultant] external force acts [accept: in a closed system] (1) \\
NB. Separate marks but statement of conservation of energy loses both marks. \\
\(1.67 \times\left[10^{-27}\right] \times 3150 \pm 9.98 \times\left[10^{-27}\right] \times 225=11.6 \times\left[10^{-27}\right] v(1)\) \\
\(\left[10^{-27}\right.\) consistently dropped or masses given as \(1,6,7 \checkmark\)] \\
With minus sign (i.e. signs correct) (1) \\
\(v=260 \mathrm{~m} \mathrm{~s}^{-1}\) (1) [no ecf] \\
Arrow to right (1) \\
\(\Sigma \mathrm{KE}\) initially \(=8.54 \times 10^{-21} \mathrm{~J}\) \\
\(\Sigma \mathrm{KE}\) finally \(=3.92 \times 10^{-21} \mathrm{~J}(1)\) \\
[Correct answer other than powers of \(10 \rightarrow 1\) mark]
\[
\begin{aligned}
\& \Delta m v=\frac{h}{\lambda} \text { or } v=\frac{h}{\lambda m}(1)\left[\text { or } \frac{h}{\lambda}=3.88 \times 10^{-21}[\mathrm{Ns}]\right] \\
\& v=3.3 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}(1)
\end{aligned}
\] \\
[No penalty for attempts to include initial momentum (which is \(\left.\left.3.0 \times 10^{-24} \mathrm{Ns}\right)\right]\)
\end{tabular} \& 2

4

2

2
10

\hline
\end{tabular}

Question			Marking details	Marks Available
2.	(a)	(i) (ii)	Relevant comment, e.g. stem suggests not at equilibrium when released / graph shows equilibrium at $\mathrm{t}=0$ / graph contradicts stem I. $\quad 0.08 \mathrm{~m}(1)$ II. $\quad 1.2 \mathrm{~s}(1)$	1
	(b)		$\begin{array}{rll} k=\frac{4 \pi^{2} m}{T^{2}} & \text { (1) } & {[\text { correct transposition at any stage }]} \\ =11 \mathrm{~N} \mathrm{~m}^{-1} & \text { (1) } & ((\text { unit including any SI equivalent })) \end{array}$	2
	(c)	(i) (ii)	$\begin{aligned} & \left\{\omega=5.24 \mathrm{rad} \mathrm{~s}^{-1}\right\} \text { or }\left\{\text { use of } v_{\max }=\frac{2 \pi A}{T} \text { [or equiv] }\right](1) \\ & v_{\max }=0.42 \mathrm{~m} \mathrm{~s}^{-1}\left[\text { accept } v_{\max }=0.080 \times 5.24\right]+\operatorname{comment}(1) \\ & {\left[\text { Full marks available for use of tangent } \rightarrow T=0.42 \pm 0.7 \mathrm{~m} \mathrm{~s}^{-1}\right]} \\ & \text { Correct sequence of } v \text { values (i.e. correct phase) (1) } \\ & t \text { values correct, and reasonable curve plotted } \end{aligned}$	2 2
	(d)	(i)	I. $\quad-$ [or "decrease"] (1) $0.035 \mathrm{~J}[\pm 0.003 \mathrm{~J}]$ (1) II. $-0.31 \mathrm{~J}[\pm 0.01 \mathrm{~J}]$ NB Correct sign required.	$\begin{aligned} & 2 \\ & 1 \end{aligned}$
		(ii)	[0.35J of] elastic [potential] energy gained (1) [Accept: [more] energy stored in spring [at 0.9s]]	1
	(e)	(i) (ii)	ordinate labelled "amplitude" and abscissa labelled "frequency" ϕ is [close to] the natural frequency [or by implication] (1) [NB not resonant frequency] 0.83 Hz (1) [e.c.f. from (a)(ii)(II)]	1 2
				16

Question			Marking details	Marks Available
3.	(a)	(i) (ii)	I. $\overline{c^{2}}=\frac{3 p}{\rho}(1) \quad$ [transposition at any stage] $=\frac{3 \times 100 \times 10^{3} \times 1.5 \times 10^{-3}}{2.4 \times 10^{-3}}$ [correct substitution or by implication] $\sqrt{\overline{c^{2}}}=433 \mathrm{~m} \mathrm{~s}^{-1}$ [Wrong attempts based on $p V=\frac{1}{3} N m \bar{c}^{2}$ can score the last mark if $\sqrt{ }$ correctly taken] II. collisions ["random process" not enough] III. $\quad 935^{2}+743^{2}+312^{2} \quad\left[=1.52 \times 10^{6}\right]$ Division of sum by 3 even if $\frac{935+743+312}{3} \quad\left[=663 \mathrm{~m} \mathrm{~s}^{-1}\right]$ $\begin{equation*} C_{\mathrm{rms}}=712 \mathrm{~m} \mathrm{~s}^{-1}(1)[\mathrm{no} \mathrm{ecf}] \tag{1} \end{equation*}$ I. $\mathrm{T}=\frac{p V}{n R}$ (1) [transposition at any stage] $\begin{equation*} T=301 \mathrm{~K} \text { or }\left\{\frac{100 \times 10^{3} \times 1.5 \times 10^{-3}}{0.050 \times 8.31}=300 \mathrm{~K} \text { or } 301 \mathrm{~K}\right\} \tag{1} \end{equation*}$ II. $\quad N=3.6 \times 10^{22}$ III. $\quad \mathrm{rmm}=\frac{2.4}{0.0600}$ (1) [award mark even if $2.4 \times \quad$ used] $=40(1)$ [NB no unit penalty]	3 1 3 2 1 2
	(b)	(i) (ii) (iii) (iv)	Attempt to find area under $\mathrm{AB} /$ use of $p \Delta V$ [or by implication] (1) 100 J (1) $\quad \begin{aligned} & \text { Or } \\ & \text { U }=\frac{3}{2} p V(1) \text { [or by impl] } \\ & \end{aligned}$ 250 J [e.c.f.] [U falls by 150 J and because the volume doesn't change] no work involved $/ Q=\Delta U(1)$	2

